Poster
Nonparametric Bayesian inference on multivariate exponential families
William R Vega-Brown · Marek Doniec · Nicholas Roy
Level 2, room 210D
We develop a model by choosing the maximum entropy distribution from the set of models satisfying certain smoothness and independence criteria; we show that inference on this model generalizes local kernel estimation to the context of Bayesian inference on stochastic processes. Our model enables Bayesian inference in contexts when standard techniques like Gaussian process inference are too expensive to apply. Exact inference on our model is possible for any likelihood function from the exponential family. Inference is then highly efficient, requiring only O(log N) time and O(N) space at run time. We demonstrate our algorithm on several problems and show quantifiable improvement in both speed and performance relative to models based on the Gaussian process.
Live content is unavailable. Log in and register to view live content