Skip to yearly menu bar Skip to main content


Poster

Rounding-based Moves for Metric Labeling

M. Pawan Kumar

Level 2, room 210D

Abstract:

Metric labeling is a special case of energy minimization for pairwise Markov random fields. The energy function consists of arbitrary unary potentials, and pairwise potentials that are proportional to a given metric distance function over the label set. Popular methods for solving metric labeling include (i) move-making algorithms, which iteratively solve a minimum st-cut problem; and (ii) the linear programming (LP) relaxation based approach. In order to convert the fractional solution of the LP relaxation to an integer solution, several randomized rounding procedures have been developed in the literature. We consider a large class of parallel rounding procedures, and design move-making algorithms that closely mimic them. We prove that the multiplicative bound of a move-making algorithm exactly matches the approximation factor of the corresponding rounding procedure for any arbitrary distance function. Our analysis includes all known results for move-making algorithms as special cases.

Live content is unavailable. Log in and register to view live content