Spectral Learning of Mixture of Hidden Markov Models
Cem Subakan · Johannes Traa · Paris Smaragdis
2014 Poster
Abstract
In this paper, we propose a learning approach for the Mixture of Hidden Markov Models (MHMM) based on the Method of Moments (MoM). Computational advantages of MoM make MHMM learning amenable for large data sets. It is not possible to directly learn an MHMM with existing learning approaches, mainly due to a permutation ambiguity in the estimation process. We show that it is possible to resolve this ambiguity using the spectral properties of a global transition matrix even in the presence of estimation noise. We demonstrate the validity of our approach on synthetic and real data.
Chat is not available.
Successful Page Load