Our ability to collect, manipulate, analyze, and act on vast amounts of data is having a profound impact on all aspects of society. Much of this data is heterogeneous in nature and interlinked in a myriad of complex ways. From information integration to scientific discovery to computational social science, we need machine learning methods that are able to exploit both the inherent uncertainty and the innate structure in a domain. Statistical relational learning (SRL) is a subfield that builds on principles from probability theory and statistics to address uncertainty while incorporating tools from knowledge representation and logic to represent structure. In this talk, I will give a brief introduction to SRL, present templates for common structured prediction problems, and describe modeling approaches that mix logic, probabilistic inference and latent variables. I’ll overview our recent work on probabilistic soft logic (PSL), an SRL framework for large-scale collective, probabilistic reasoning in relational domains. I’ll close by highlighting emerging opportunities (and challenges!!) in realizing the effectiveness of data and structure for knowledge discovery.