Learning ReLUs via Gradient Descent
Mahdi Soltanolkotabi
Keywords:
Large Deviations and Asymptotic Analysis
Sparsity and Compressed Sensing
Non-Convex Optimization
Optimization for Deep Networks
2017 Poster
Abstract
In this paper we study the problem of learning Rectified Linear Units (ReLUs) which are functions of the form $\vct{x}\mapsto \max(0,\langle \vct{w},\vct{x}\rangle)$ with $\vct{w}\in\R^d$ denoting the weight vector. We study this problem in the high-dimensional regime where the number of observations are fewer than the dimension of the weight vector. We assume that the weight vector belongs to some closed set (convex or nonconvex) which captures known side-information about its structure. We focus on the realizable model where the inputs are chosen i.i.d.~from a Gaussian distribution and the labels are generated according to a planted weight vector. We show that projected gradient descent, when initialized at $\vct{0}$, converges at a linear rate to the planted model with a number of samples that is optimal up to numerical constants. Our results on the dynamics of convergence of these very shallow neural nets may provide some insights towards understanding the dynamics of deeper architectures.
Chat is not available.
Successful Page Load