Poster
A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks
Qinliang Su · xuejun Liao · Lawrence Carin
Pacific Ballroom #195
Keywords: [ Graphical Models ] [ Probabilistic Methods ] [ Latent Variable Models ]
We present a probabilistic framework for nonlinearities, based on doubly truncated Gaussian distributions. By setting the truncation points appropriately, we are able to generate various types of nonlinearities within a unified framework, including sigmoid, tanh and ReLU, the most commonly used nonlinearities in neural networks. The framework readily integrates into existing stochastic neural networks (with hidden units characterized as random variables), allowing one for the first time to learn the nonlinearities alongside model weights in these networks. Extensive experiments demonstrate the performance improvements brought about by the proposed framework when integrated with the restricted Boltzmann machine (RBM), temporal RBM and the truncated Gaussian graphical model (TGGM).
Live content is unavailable. Log in and register to view live content