Poster
Clustering Stable Instances of Euclidean k-means.
Aravindan Vijayaraghavan · Abhratanu Dutta · Alex Wang
Pacific Ballroom #26
Keywords: [ Clustering ] [ Combinatorial Optimization ] [ Computational Complexity ]
The Euclidean k-means problem is arguably the most widely-studied clustering problem in machine learning. While the k-means objective is NP-hard in the worst-case, practitioners have enjoyed remarkable success in applying heuristics like Lloyd's algorithm for this problem. To address this disconnect, we study the following question: what properties of real-world instances will enable us to design efficient algorithms and prove guarantees for finding the optimal clustering? We consider a natural notion called additive perturbation stability that we believe captures many practical instances of Euclidean k-means clustering. Stable instances have unique optimal k-means solutions that does not change even when each point is perturbed a little (in Euclidean distance). This captures the property that k-means optimal solution should be tolerant to measurement errors and uncertainty in the points. We design efficient algorithms that provably recover the optimal clustering for instances that are additive perturbation stable. When the instance has some additional separation, we can design a simple, efficient algorithm with provable guarantees that is also robust to outliers. We also complement these results by studying the amount of stability in real datasets, and demonstrating that our algorithm performs well on these benchmark datasets.
Live content is unavailable. Log in and register to view live content