Poster
|
Tue 18:30
|
Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · James Sharpnack · Ryan Tibshirani
|
|
Poster
|
Tue 18:30
|
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh · Tackgeun You · Jonghwan Mun · Bohyung Han
|
|
Poster
|
Tue 18:30
|
Group Additive Structure Identification for Kernel Nonparametric Regression
Chao Pan · Michael Zhu
|
|
Poster
|
Mon 18:30
|
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi · Luigi Carratino · Lorenzo Rosasco
|
|
Poster
|
Tue 18:30
|
On Optimal Generalizability in Parametric Learning
Ahmad Beirami · Meisam Razaviyayn · Shahin Shahrampour · Vahid Tarokh
|
|
Poster
|
Wed 18:30
|
A Universal Analysis of Large-Scale Regularized Least Squares Solutions
Ashkan Panahi · Babak Hassibi
|
|
Poster
|
Tue 18:30
|
Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee
Alireza Aghasi · Afshin Abdi · Nam Nguyen · Justin Romberg
|
|
Poster
|
Tue 18:30
|
Generalization Properties of Learning with Random Features
Alessandro Rudi · Lorenzo Rosasco
|
|
Poster
|
Wed 18:30
|
Variance-based Regularization with Convex Objectives
Hongseok Namkoong · John Duchi
|
|
Poster
|
Tue 18:30
|
How regularization affects the critical points in linear networks
Amirhossein Taghvaei · Jin W Kim · Prashant Mehta
|
|
Poster
|
Mon 18:30
|
On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning
Xingguo Li · Lin Yang · Jason Ge · Jarvis Haupt · Tong Zhang · Tuo Zhao
|
|
Poster
|
Mon 18:30
|
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein · Maksym Andriushchenko
|
|