Skip to yearly menu bar Skip to main content


Search All 2017 Events
 

30 Results

<<   <   Page 2 of 3   >   >>
Poster
Tue 18:30 Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · James Sharpnack · Ryan Tibshirani
Poster
Tue 18:30 Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh · Tackgeun You · Jonghwan Mun · Bohyung Han
Poster
Tue 18:30 Group Additive Structure Identification for Kernel Nonparametric Regression
Chao Pan · Michael Zhu
Poster
Mon 18:30 FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi · Luigi Carratino · Lorenzo Rosasco
Poster
Tue 18:30 On Optimal Generalizability in Parametric Learning
Ahmad Beirami · Meisam Razaviyayn · Shahin Shahrampour · Vahid Tarokh
Poster
Wed 18:30 A Universal Analysis of Large-Scale Regularized Least Squares Solutions
Ashkan Panahi · Babak Hassibi
Poster
Tue 18:30 Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee
Alireza Aghasi · Afshin Abdi · Nam Nguyen · Justin Romberg
Poster
Tue 18:30 Generalization Properties of Learning with Random Features
Alessandro Rudi · Lorenzo Rosasco
Poster
Wed 18:30 Variance-based Regularization with Convex Objectives
Hongseok Namkoong · John Duchi
Poster
Tue 18:30 How regularization affects the critical points in linear networks
Amirhossein Taghvaei · Jin W Kim · Prashant Mehta
Poster
Mon 18:30 On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning
Xingguo Li · Lin Yang · Jason Ge · Jarvis Haupt · Tong Zhang · Tuo Zhao
Poster
Mon 18:30 Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein · Maksym Andriushchenko