Skip to yearly menu bar Skip to main content


Search All 2017 Events
 

33 Results

<<   <   Page 3 of 3   >>   >
Poster
Mon 18:30 Beyond normality: Learning sparse probabilistic graphical models in the non-Gaussian setting
Rebecca Morrison · Ricardo Baptista · Youssef Marzouk
Poster
Wed 18:30 Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications
Linus Hamilton · Frederic Koehler · Ankur Moitra
Poster
Wed 18:30 Learning Chordal Markov Networks via Branch and Bound
Kari Rantanen · Antti Hyttinen · Matti Järvisalo
Poster
Mon 18:30 Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr
Poster
Mon 18:30 Parametric Simplex Method for Sparse Learning
Haotian Pang · Han Liu · Robert J Vanderbei · Tuo Zhao
Poster
Wed 18:30 Permutation-based Causal Inference Algorithms with Interventions
Yuhao Wang · Liam Solus · Karren Yang · Caroline Uhler
Poster
Tue 18:30 EEG-GRAPH: A Factor-Graph-Based Model for Capturing Spatial, Temporal, and Observational Relationships in Electroencephalograms
Yogatheesan Varatharajah · Min Jin Chong · Krishnakant Saboo · Brent M Berry · Benjamin Brinkmann · Gregory Worrell · Ravishankar Iyer
Poster
Tue 18:30 Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces
Daniel Milstein · Jason Pacheco · Leigh Hochberg · John D Simeral · Beata Jarosiewicz · Erik Sudderth
Poster
Tue 18:30 AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Marco Cusumano-Towner · Vikash Mansinghka