Workshop
|
Sat 16:50
|
POSTER: Power-law temporal discounting over a logarithmically compressed timeline for scale invariant reinforcement learning
Zoran Tiganj
|
|
Workshop
|
Sat 8:00
|
Hierarchical Reinforcement Learning
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa
|
|
Spotlight
|
Wed 15:30
|
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation
Yuhuai Wu · Elman Mansimov · Roger Grosse · Shun Liao · Jimmy Ba
|
|
Poster
|
Wed 18:30
|
Natural Value Approximators: Learning when to Trust Past Estimates
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul
|
|
Symposium
|
Thu 14:00
|
Deep Reinforcement Learning
Pieter Abbeel · Yan Duan · David Silver · Satinder Singh · Junhyuk Oh · Rein Houthooft
|
|
Poster
|
Tue 18:30
|
Optimistic posterior sampling for reinforcement learning: worst-case regret bounds
Shipra Agrawal · Randy Jia
|
|
Poster
|
Tue 18:30
|
Minimal Exploration in Structured Stochastic Bandits
Richard Combes · Stefan Magureanu · Alexandre Proutiere
|
|
Workshop
|
Fri 9:00
|
Pieter Abbeel: Reducing Data Needs for Real-World Reinforcement Learning
|
|
Poster
|
Wed 18:30
|
Generalizing GANs: A Turing Perspective
Roderich Gross · Yue Gu · Wei Li · Melvin Gauci
|
|
Demonstration
|
Wed 19:00
|
MAgent: A Many-Agent Reinforcement Learning Research Platform for Artificial Collective Intelligence
Lianmin Zheng · Jiacheng Yang · Han Cai · Weinan Zhang · Jun Wang · Yong Yu
|
|
Poster
|
Mon 18:30
|
Task-based End-to-end Model Learning in Stochastic Optimization
Priya Donti · J. Zico Kolter · Brandon Amos
|
|
Workshop
|
Fri 16:45
|
Learning Against Non-Stationary Agents with Opponent Modeling & Deep Reinforcement Learning
Richard Everett
|
|