Workshop
Advances in Approximate Bayesian Inference
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias
Seaside Ballroom
Fri 8 Dec, 8 a.m. PST
Approximate inference is key to modern probabilistic modeling. Thanks to the availability of big data, significant computational power, and sophisticated models, machine learning has achieved many breakthroughs in multiple application domains. At the same time, approximate inference becomes critical since exact inference is intractable for most models of interest. Within the field of approximate Bayesian inference, variational and Monte Carlo methods are currently the mainstay techniques. For both methods, there has been considerable progress both on the efficiency and performance.
In this workshop, we encourage submissions advancing approximate inference methods. We are open to a broad scope of methods within the field of Bayesian inference. In addition, we also encourage applications of approximate inference in many domains, such as computational biology, recommender systems, differential privacy, and industry applications.
Live content is unavailable. Log in and register to view live content