Skip to yearly menu bar Skip to main content

Keynote Talk
Workshop: Workshop on Computer Assisted Programming (CAP)

Roopsha Samanta Talk

Roopsha Samanta



The dream of classical program synthesis is to generate programs from complete, formal specifications of their expected behavior. An increasingly favored paradigm of synthesis is inductive program synthesis, where specifications of program behavior are provided in the form of examples. Inductive program synthesis not only helps make program synthesis more tractable, but also has the potential to democratize programming!

Unfortunately, inductive synthesis engines encounter challenges like overfitting, ambiguity, and brittleness, similar to other inductive learning engines. PL researchers have typically attacked these problems by applying syntactic biases to the search space in the form of tailored domain-specific languages, grammars and ranking functions. In this talk, I will show how one can further enhance the generalizability and robustness of such synthesis engines by applying semantic biases to the search space.


Roopsha Samanta is an Assistant Professor the Department of Computer Science at Purdue University. She leads the Purdue Formal Methods (PurForM) group and is a member of the Purdue Programming Languages (PurPL) group. Before joining Purdue in 2016, she completed her PhD at UT Austin in 2013, advised by E. Allen Emerson and Vijay K. Garg, and was a postdoctoral researcher at IST Austria from 2014-2016 with Thomas A. Henzinger. She is a recipient of the 2019 NSF CAREER award.

Her research interests are in program verification, program synthesis, and concurrency. She likes to work at the intersection of formal methods and programming languages to develop frameworks to assist programmers write reliable programs. Her current research agenda is centered around two themes—formal reasoning about distributed systems and semantics-guided inductive program synthesis.