Skip to yearly menu bar Skip to main content

Affinity Workshop: Black in AI

Contributed Talk 5: NUBIA: NeUral Based Interchangeability Assessor for Text Generation

Hassan Kane


We present NUBIA, a methodology to build automatic evaluation metrics for text generation using only machine learning models as core components. A typical NUBIA model is composed of three modules: a neural feature extractor, an aggregator and a calibrator. We demonstrate an implementation of NUBIA which outperforms metrics currently used to evaluate machine translation, summaries and slightly exceeds/matches state of the art metrics on correlation with human judgement on the WMT segment-level Direct Assessment task, sentence-level ranking and image captioning evaluation. The model implemented is modular, explainable and set to continuously improve over time.

Chat is not available.