Skip to yearly menu bar Skip to main content


Implicit Rank-Minimizing Autoencoder

Li Jing · Jure Zbontar · yann lecun

Poster Session 3 #941


An important component of autoencoder methods is the method by which the information capacity of the latent representation is minimized or limited. In this work, the rank of the covariance matrix of the codes is implicitly minimized by relying on the fact that gradient descent learning in multi-layer linear networks leads to minimum-rank solutions. By inserting a number of extra linear layers between the encoder and the decoder, the system spontaneously learns representations with a low effective dimension. The model, dubbed Implicit Rank-Minimizing Autoencoder (IRMAE), is simple, deterministic, and learns continuous latent space. We demonstrate the validity of the method on several image generation and representation learning tasks.

Chat is not available.