Skip to yearly menu bar Skip to main content


Poster

Agnostic Q-learning with Function Approximation in Deterministic Systems: Near-Optimal Bounds on Approximation Error and Sample Complexity

Simon Du · Jason Lee · Gaurav Mahajan · Ruosong Wang

Poster Session 1 #226

Abstract: The current paper studies the problem of agnostic Q-learning with function approximation in deterministic systems where the optimal Q-function is approximable by a function in the class F with approximation error δ0. We propose a novel recursion-based algorithm and show that if δ=O(ρ/dimE), then one can find the optimal policy using O(dimE) trajectories, where ρ is the gap between the optimal Q-value of the best actions and that of the second-best actions and dimE is the Eluder dimension of F. Our result has two implications: \begin{enumerate}\item In conjunction with the lower bound in [Du et al., 2020], our upper bound suggests that the condition $\delta = \widetilde{\Theta}\left(\rho/\sqrt{\dim_E}\right)$ is necessary and sufficient for algorithms with polynomial sample complexity.\item In conjunction with the obvious lower bound in the tabular case, our upper bound suggests that the sample complexity $\widetilde{\Theta}\left(\dim_E\right)$ is tight in the agnostic setting.\end{enumerate} Therefore, we help address the open problem on agnostic Q-learning proposed in [Wen and Van Roy, 2013]. We further extend our algorithm to the stochastic reward setting and obtain similar results.

Chat is not available.