Skip to yearly menu bar Skip to main content


A graph similarity for deep learning

Seongmin Ok

Poster Session 6 #1841


Graph neural networks (GNNs) have been successful in learning representations from graphs. Many popular GNNs follow the pattern of aggregate-transform: they aggregate the neighbors' attributes and then transform the results of aggregation with a learnable function. Analyses of these GNNs explain which pairs of non-identical graphs have different representations. However, we still lack an understanding of how similar these representations will be. We adopt kernel distance and propose transform-sum-cat as an alternative to aggregate-transform to reflect the continuous similarity between the node neighborhoods in the neighborhood aggregation. The idea leads to a simple and efficient graph similarity, which we name Weisfeiler-Leman similarity (WLS). In contrast to existing graph kernels, WLS is easy to implement with common deep learning frameworks. In graph classification experiments, transform-sum-cat significantly outperforms other neighborhood aggregation methods from popular GNN models. We also develop a simple and fast GNN model based on transform-sum-cat, which obtains, in comparison with widely used GNN models, (1) a higher accuracy in node classification, (2) a lower absolute error in graph regression, and (3) greater stability in adversarial training of graph generation.

Chat is not available.