Skip to yearly menu bar Skip to main content


Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension

Ruosong Wang · Russ Salakhutdinov · Lin Yang

Poster Session 0 #167

Abstract: Value function approximation has demonstrated phenomenal empirical success in reinforcement learning (RL). Nevertheless, despite a handful of recent progress on developing theory for RL with linear function approximation, the understanding of \emph{general} function approximation schemes largely remains missing. In this paper, we establish the first provably efficient RL algorithm with general value function approximation. We show that if the value functions admit an approximation with a function class $\mathcal{F}$, our algorithm achieves a regret bound of $\widetilde{O}(\mathrm{poly}(dH)\sqrt{T})$ where $d$ is a complexity measure of $\mathcal{F}$ that depends on the eluder dimension~[Russo and Van Roy, 2013] and log-covering numbers, $H$ is the planning horizon, and $T$ is the number interactions with the environment. Our theory generalizes the linear MDP assumption to general function classes. Moreover, our algorithm is model-free and provides a framework to justify the effectiveness of algorithms used in practice.

Chat is not available.