Skip to yearly menu bar Skip to main content


Variational Policy Gradient Method for Reinforcement Learning with General Utilities

Junyu Zhang · Alec Koppel · Amrit Singh Bedi · Csaba Szepesvari · Mengdi Wang

Poster Session 1 #204


In recent years, reinforcement learning systems with general goals beyond a cumulative sum of rewards have gained traction, such as in constrained problems, exploration, and acting upon prior experiences. In this paper, we consider policy optimization in Markov Decision Problems, where the objective is a general utility function of the state-action occupancy measure, which subsumes several of the aforementioned examples as special cases. Such generality invalidates the Bellman equation. As this means that dynamic programming no longer works, we focus on direct policy search. Analogously to the Policy Gradient Theorem \cite{sutton2000policy} available for RL with cumulative rewards, we derive a new Variational Policy Gradient Theorem for RL with general utilities, which establishes that the gradient may be obtained as the solution of a stochastic saddle point problem involving the Fenchel dual of the utility function. We develop a variational Monte Carlo gradient estimation algorithm to compute the policy gradient based on sample paths. Further, we prove that the variational policy gradient scheme converges globally to the optimal policy for the general objective, and we also establish its rate of convergence that matches or improves the convergence rate available in the case of RL with cumulative rewards.

Chat is not available.