Skip to yearly menu bar Skip to main content


Statistical-Query Lower Bounds via Functional Gradients

Surbhi Goel · Aravind Gollakota · Adam Klivans

Poster Session 1 #435

Abstract: We give the first statistical-query lower bounds for agnostically learning any non-polynomial activation with respect to Gaussian marginals (e.g., ReLU, sigmoid, sign). For the specific problem of ReLU regression (equivalently, agnostically learning a ReLU), we show that any statistical-query algorithm with tolerance $n^{-(1/\epsilon)^b}$ must use at least $2^{n^c} \epsilon$ queries for some constants $b, c > 0$, where $n$ is the dimension and $\epsilon$ is the accuracy parameter. Our results rule out {\em general} (as opposed to correlational) SQ learning algorithms, which is unusual for real-valued learning problems. Our techniques involve a gradient boosting procedure for ``amplifying'' recent lower bounds due to Diakonikolas et al.\ (COLT 2020) and Goel et al.\ (ICML 2020) on the SQ dimension of functions computed by two-layer neural networks. The crucial new ingredient is the use of a nonstandard convex functional during the boosting procedure. This also yields a best-possible reduction between two commonly studied models of learning: agnostic learning and probabilistic concepts.

Chat is not available.