Estimating weighted areas under the ROC curve
Andreas Maurer · Massimiliano Pontil
2020 Poster
Abstract
Exponential bounds on the estimation error are given for the plug-in estimator of weighted areas under the ROC curve. The bounds hold for single score functions and uniformly over classes of functions, whose complexity can be controlled by Gaussian or Rademacher averages. The results justify learning algorithms which select score functions to maximize the empirical partial area under the curve (pAUC). They also illustrate the use of some recent advances in the theory of nonlinear empirical processes.
Video
Chat is not available.
Successful Page Load