Skip to yearly menu bar Skip to main content


Critic Regularized Regression

Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas

Poster Session 5 #1372


Offline reinforcement learning (RL), also known as batch RL, offers the prospect of policy optimization from large pre-recorded datasets without online environment interaction. It addresses challenges with regard to the cost of data collection and safety, both of which are particularly pertinent to real-world applications of RL. Unfortunately, most off-policy algorithms perform poorly when learning from a fixed dataset. In this paper, we propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR). We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces -- outperforming several state-of-the-art offline RL algorithms by a significant margin on a wide range of benchmark tasks.

Chat is not available.