Poster
|
Thu 9:00
|
MinMax Methods for Optimal Transport and Beyond: Regularization, Approximation and Numerics
Luca De Gennaro Aquino · Stephan Eckstein
|
|
Poster
|
Thu 21:00
|
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel · Adam Klivans · Frederic Koehler
|
|
Poster
|
Tue 9:00
|
Zap Q-Learning With Nonlinear Function Approximation
Shuhang Chen · Adithya M Devraj · Fan Lu · Ana Busic · Sean Meyn
|
|
Poster
|
Thu 21:00
|
Tight last-iterate convergence rates for no-regret learning in multi-player games
Noah Golowich · Sarath Pattathil · Constantinos Daskalakis
|
|
Poster
|
Mon 21:00
|
Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction
Gen Li · Yuting Wei · Yuejie Chi · Yuantao Gu · Yuxin Chen
|
|
Workshop
|
Fri 12:00
|
Extendable and invertible manifold learning with geometry regularized autoencoders
Andres F Duque · Sacha Morin · Guy Wolf · Kevin Moon
|
|
Poster
|
Thu 9:00
|
Flows for simultaneous manifold learning and density estimation
Johann Brehmer · Kyle Cranmer
|
|
Poster
|
Thu 21:00
|
Learning Manifold Implicitly via Explicit Heat-Kernel Learning
Yufan Zhou · Changyou Chen · Jinhui Xu
|
|
Workshop
|
|
Accelerating Inverse Design of Nanostructures Using Manifold Learning
Mohammadreza Zandehshahvar · Yashar Kiarashinejad · Muliang Zhu · Hossein Maleki · Omid Hemmatyar · Sajjad Abdollahramezani · Reza Pourabolghasem · Ali Adibi
|
|
Workshop
|
Fri 12:00
|
Deep Riemannian Manifold Learning
Aaron Lou · Maximilian Nickel · Brandon Amos
|
|
Workshop
|
|
Poster: Solving Compositional Reinforcement Learning Problems via Task Reduction
|
|
Workshop
|
Sat 11:30
|
Karen E Willcox - Operator Inference: Bridging model reduction and scientific machine learning
Karen Willcox
|
|