Skip to yearly menu bar Skip to main content


Keynote Talk
in
Workshop: Efficient Natural Language and Speech Processing (Models, Training, and Inference)

Why We Want Contrastive Learning in Language Models

Danqi Chen


Abstract:

Contrastive learning aims to learn representations such that similar samples stay close to each other while dissimilar ones are far apart. Recently, it has achieved great success in self-supervised learning of visual representations and even surpassed its supervised counterparts. In this talk, I will argue why contrastive learning may provide new solutions in language model pre-training and fine-tuning. I will first describe our recent work SimCSE on how contrastive learning can be used with pre-trained language models to produce universal sentence representations. And then, I will discuss why contrastive learning can potentially lead to better pre-trained representations. I hope this talk can shed light on some limitations of pre-trained language representations as well as why contrastive learning is a great idea to tackle these problems.