Skip to yearly menu bar Skip to main content

Workshop: OPT 2021: Optimization for Machine Learning

Community-based Layerwise Distributed Training of Graph Convolutional Networks

Hongyi Li · Junxiang Wang · Yongchao Wang · Yue Cheng · Liang Zhao


Graph convolutional network (GCN) has been successfully applied to many graph-based applications. Training a large-scale GCN model, however, is still challenging: Due to the node dependency and layer dependency of the GCN architecture, a huge amount of computational time and memory is required in the training process. In this paper, we propose a parallel and distributed GCN training algorithm based on the Alternating Direction Method of Multipliers (ADMM) to tackle the two challenges simultaneously. We first split the GCN layers into independent blocks to achieve layer parallelism. Furthermore, we reduce node dependency by dividing the graph into several dense communities such that each of them can be trained with an agent in parallel. Finally, we provide solutions for all subproblems in the community-based ADMM algorithm. Preliminary results demonstrate that our proposed community-based ADMM training algorithm can lead to more than triple speedup while achieving the best performance compared to state-of-the-art methods.

Chat is not available.