Moderator: Alice Oh
The Datasets and Benchmarks track serves as a novel venue for high-quality publications, talks, and posters on highly valuable machine learning datasets and benchmarks, as well as a forum for discussions on how to improve dataset development. Datasets and benchmarks are crucial for the development of machine learning methods, but also require their own publishing and reviewing guidelines. For instance, datasets can often not be reviewed in a double-blind fashion, and hence full anonymization will not be required. On the other hand, they do require additional specific checks, such as a proper description of how the data was collected, whether they show intrinsic bias, and whether they will remain accessible.
Fri 12:00 a.m. - 12:10 a.m.
|
Programming Puzzles
(
Oral
)
SlidesLive Video »
We introduce a new type of programming challenge called programming puzzles, as an objective and comprehensive evaluation of program synthesis, and release an open-source dataset of Python Programming Puzzles (P3). Each puzzle is defined by a short Python program $f$, and the goal is to find an input $x$ which makes $f$ output "True". The puzzles are objective in that each one is specified entirely by the source code of its verifier $f$, so evaluating $f(x)$ is all that is needed to test a candidate solution $x$. They do not require an answer key or input/output examples, nor do they depend on natural language understanding. The dataset is comprehensive in that it spans problems of a range of difficulties and domains, ranging from trivial string manipulation problems that are immediately obvious to human programmers (but not necessarily to AI), to classic programming puzzles (e.g., Towers of Hanoi), to interview/competitive-programming problems (e.g., dynamic programming), to longstanding open problems in algorithms and mathematics (e.g., factoring). The objective nature of P3 readily supports self-supervised bootstrapping. We develop baseline enumerative program synthesis and GPT-3 solvers that are capable of solving easy puzzles---even without access to any reference solutions---by learning from their own past solutions. Based on a small user study, we find puzzle difficulty to correlate between human programmers and the baseline AI solvers.
|
Tal Schuster · Ashwin Kalyan · Alex Polozov · Adam Kalai 🔗 |
Fri 12:10 a.m. - 12:20 a.m.
|
Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models
(
Oral
)
SlidesLive Video » Large-scale pre-trained language models have achieved tremendous success across a wide range of natural language understanding (NLU) tasks, even surpassing human performance. However, recent studies reveal that the robustness of these models can be challenged by carefully crafted textual adversarial examples. While several individual datasets have been proposed to evaluate model robustness, a principled and comprehensive benchmark is still missing. In this paper, we present Adversarial GLUE (AdvGLUE), a new multi-task benchmark to quantitatively and thoroughly explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks. In particular, we systematically apply 14 textual adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations. Our findings are summarized as follows. (i) Most existing adversarial attack algorithms are prone to generating invalid or ambiguous adversarial examples, with around 90% of them either changing the original semantic meanings or misleading human annotators as well. Therefore, we perform a careful filtering process to curate a high-quality benchmark. (ii) All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy. We hope our work will motivate the development of new adversarial attacks that are more stealthy and semantic-preserving, as well as new robust language models against sophisticated adversarial attacks. AdvGLUE is available at https://adversarialglue.github.io. |
Boxin Wang · Chejian Xu · Shuohang Wang · Zhe Gan · Yu Cheng · Jianfeng Gao · Ahmed Awadallah · Bo Li 🔗 |
Fri 12:20 a.m. - 12:30 a.m.
|
NaturalProofs: Mathematical Theorem Proving in Natural Language
(
Oral
)
SlidesLive Video » Understanding and creating mathematics using natural mathematical language - the mixture of symbolic and natural language used by humans - is a challenging and important problem for driving progress in machine learning. As a step in this direction, we develop NaturalProofs, a multi-domain corpus of mathematical statements and their proofs, written in natural mathematical language. NaturalProofs unifies broad coverage, deep coverage, and low-resource mathematical sources, allowing for evaluating both in-distribution and zero-shot generalization. Using NaturalProofs, we benchmark strong neural methods on mathematical reference retrieval and generation tasks which test a system's ability to determine key results that appear in a proof. Large-scale sequence models show promise compared to classical information retrieval methods, yet their performance and out-of-domain generalization leave substantial room for improvement. NaturalProofs opens many avenues for research on challenging mathematical tasks. |
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho 🔗 |
Fri 12:30 a.m. - 12:40 a.m.
|
HumBugDB: A Large-scale Acoustic Mosquito Dataset
(
Oral
)
SlidesLive Video » This paper presents the first large-scale multi-species dataset of acoustic recordings of mosquitoes tracked continuously in free flight. We present 20 hours of audio recordings that we have expertly labelled and tagged precisely in time. Significantly, 18 hours of recordings contain annotations from 36 different species. Mosquitoes are well-known carriers of diseases such as malaria, dengue and yellow fever. Collecting this dataset is motivated by the need to assist applications which utilise mosquito acoustics to conduct surveys to help predict outbreaks and inform intervention policy. The task of detecting mosquitoes from the sound of their wingbeats is challenging due to the difficulty in collecting recordings from realistic scenarios. To address this, as part of the HumBug project, we conducted global experiments to record mosquitoes ranging from those bred in culture cages to mosquitoes captured in the wild. Consequently, the audio recordings vary in signal-to-noise ratio and contain a broad range of indoor and outdoor background environments from Tanzania, Thailand, Kenya, the USA and the UK. In this paper we describe in detail how we collected, labelled and curated the data. The data is provided from a PostgreSQL database, which captures important metadata such as the capture method, age, feeding status and gender of the mosquitoes. Additionally, we provide code to extract features and train Bayesian convolutional neural networks for two key tasks: the identification of mosquitoes from their corresponding background environments, and the classification of detected mosquitoes into species. Our extensive dataset is both challenging to machine learning researchers focusing on acoustic identification, and critical to entomologists, geo-spatial modellers and other domain experts to understand mosquito behaviour, model their distribution, and manage the threat they pose to humans. |
Ivan Kiskin · Marianne Sinka · Adam Cobb · Waqas Rafique · Lawrence Wang · Davide Zilli · Benjamin Gutteridge · Rinita Dam · Theodoros Marinos · Yunpeng Li · Dickson Msaky · Emmanuel Kaindoa · Gerard Killeen · Eva Herreros-Moya · Kathy Willis · Stephen J Roberts
|
Fri 12:40 a.m. - 1:00 a.m.
|
Joint Q&A
(
Q&A
)
|
🔗 |