Skip to yearly menu bar Skip to main content


Beltrami Flow and Neural Diffusion on Graphs

Benjamin Chamberlain · James Rowbottom · Davide Eynard · Francesco Di Giovanni · Xiaowen Dong · Michael Bronstein

Keywords: [ Deep Learning ] [ Graph Learning ]


We propose a novel class of graph neural networks based on the discretized Beltrami flow, a non-Euclidean diffusion PDE. In our model, node features are supplemented with positional encodings derived from the graph topology and jointly evolved by the Beltrami flow, producing simultaneously continuous feature learning, topology evolution. The resulting model generalizes many popular graph neural networks and achieves state-of-the-art results on several benchmarks.

Chat is not available.