Skip to yearly menu bar Skip to main content


Poster

Global-aware Beam Search for Neural Abstractive Summarization

Ye Ma · Zixun Lan · Lu Zong · Kaizhu Huang

Keywords: [ ]


Abstract:

This study develops a calibrated beam-based algorithm with awareness of the global attention distribution for neural abstractive summarization, aiming to improve the local optimality problem of the original beam search in a rigorous way. Specifically, a novel global protocol is proposed based on the attention distribution to stipulate how a global optimal hypothesis should attend to the source. A global scoring mechanism is then developed to regulate beam search to generate summaries in a near-global optimal fashion. This novel design enjoys a distinctive property, i.e., the global attention distribution could be predicted before inference, enabling step-wise improvements on the beam search through the global scoring mechanism. Extensive experiments on nine datasets show that the global (attention)-aware inference significantly improves state-of-the-art summarization models even using empirical hyper-parameters. The algorithm is also proven robust as it remains to generate meaningful texts with corrupted attention distributions. The codes and a comprehensive set of examples are available.

Chat is not available.