Poster

Lattice partition recovery with dyadic CART

OSCAR HERNAN MADRID PADILLA · Yi Yu · Alessandro Rinaldo

Virtual

Keywords: [ Graph Learning ] [ Machine Learning ]

[ Abstract ]
Thu 9 Dec 8:30 a.m. PST — 10 a.m. PST

Abstract: We study piece-wise constant signals corrupted by additive Gaussian noise over a $d$-dimensional lattice. Data of this form naturally arise in a host of applications, and the tasks of signal detection or testing, de-noising and estimation have been studied extensively in the statistical and signal processing literature. In this paper we consider instead the problem of partition recovery, i.e.~of estimating the partition of the lattice induced by the constancy regions of the unknown signal, using the computationally-efficient dyadic classification and regression tree (DCART) methodology proposed by \citep{donoho1997cart}. We prove that, under appropriate regularity conditions on the shape of the partition elements, a DCART-based procedure consistently estimates the underlying partition at a rate of order $\sigma^2 k^* \log (N)/\kappa^2$, where $k^*$ is the minimal number of rectangular sub-graphs obtained using recursive dyadic partitions supporting the signal partition, $\sigma^2$ is the noise variance, $\kappa$ is the minimal magnitude of the signal difference among contiguous elements of the partition and $N$ is the size of the lattice. Furthermore, under stronger assumptions, our method attains a sharper estimation error of order $\sigma^2\log(N)/\kappa^2$, independent of $k^*$, which we show to be minimax rate optimal. Our theoretical guarantees further extend to the partition estimator based on the optimal regression tree estimator (ORT) of \cite{chatterjee2019adaptive} and to the one obtained through an NP-hard exhaustive search method. We corroborate our theoretical findings and the effectiveness of DCART for partition recovery in simulations.

Chat is not available.