Machine Learning for Variance Reduction in Online Experiments

Yongyi Guo · Dominic Coey · Mikael Konutgan · Wenting Li · Chris Schoener · Matt Goldman

Keywords: [ Machine Learning ]

[ Abstract ]
Thu 9 Dec 8:30 a.m. PST — 10 a.m. PST

Abstract: We consider the problem of variance reduction in randomized controlled trials, through the use of covariates correlated with the outcome but independent of the treatment. We propose a machine learning regression-adjusted treatment effect estimator, which we call MLRATE. MLRATE uses machine learning predictors of the outcome to reduce estimator variance. It employs cross-fitting to avoid overfitting biases, and we prove consistency and asymptotic normality under general conditions. MLRATE is robust to poor predictions from the machine learning step: if the predictions are uncorrelated with the outcomes, the estimator performs asymptotically no worse than the standard difference-in-means estimator, while if predictions are highly correlated with outcomes, the efficiency gains are large. In A/A tests, for a set of 48 outcome metrics commonly monitored in Facebook experiments, the estimator has over $70\%$ lower variance than the simple difference-in-means estimator, and about $19\%$ lower variance than the common univariate procedure which adjusts only for pre-experiment values of the outcome.

Chat is not available.