Oral Session 2: Theory

Moderator: Amit Daniely

Tue 7 Dec 1 a.m. PST — 2 a.m. PST


Chat is not available.

Tue 7 Dec. 1:00 - 1:15 PST

Data driven semi-supervised learning

Maria-Florina Balcan · Dravyansh Sharma

We consider a novel data driven approach for designing semi-supervised learning algorithms that can effectively learn with only a small number of labeled examples. We focus on graph-based techniques, where the unlabeled examples are connected in a graph under the implicit assumption that similar nodes likely have similar labels. Over the past two decades, several elegant graph-based semi-supervised learning algorithms for inferring the labels of the unlabeled examples given the graph and a few labeled examples have been proposed. However, the problem of how to create the graph (which impacts the practical usefulness of these methods significantly) has been relegated to heuristics and domain-specific art, and no general principles have been proposed. In this work we present a novel data driven approach for learning the graph and provide strong formal guarantees in both the distributional and online learning formalizations. We show how to leverage problem instances coming from an underlying problem domain to learn the graph hyperparameters for commonly used parametric families of graphs that provably perform well on new instances from the same domain. We obtain low regret and efficient algorithms in the online setting, and generalization guarantees in the distributional setting. We also show how to combine several very different similarity metrics and learn multiple hyperparameters, our results hold for large classes of problems. We expect some of the tools and techniques we develop along the way to be of independent interest, for data driven algorithms more generally.

Tue 7 Dec. 1:15 - 1:20 PST


Tue 7 Dec. 1:20 - 1:35 PST

Stability and Deviation Optimal Risk Bounds with Convergence Rate $O(1/n)$

Yegor Klochkov · Nikita Zhivotovskiy

The sharpest known high probability generalization bounds for uniformly stable algorithms (Feldman, Vondrak, NeurIPS 2018, COLT, 2019), (Bousquet, Klochkov, Zhivotovskiy, COLT, 2020) contain a generally inevitable sampling error term of order $\Theta(1/\sqrt{n})$. When applied to excess risk bounds, this leads to suboptimal results in several standard stochastic convex optimization problems. We show that if the so-called Bernstein condition is satisfied, the term $\Theta(1/\sqrt{n})$ can be avoided, and high probability excess risk bounds of order up to $O(1/n)$ are possible via uniform stability. Using this result, we show a high probability excess risk bound with the rate $O(\log n/n)$ for strongly convex and Lipschitz losses valid for \emph{any} empirical risk minimization method. This resolves a question of Shalev-Shwartz, Shamir, Srebro, and Sridharan (COLT, 2009). We discuss how $O(\log n/n)$ high probability excess risk bounds are possible for projected gradient descent in the case of strongly convex and Lipschitz losses without the usual smoothness assumption.

Tue 7 Dec. 1:35 - 1:40 PST


Tue 7 Dec. 1:40 - 1:55 PST

The Complexity of Bayesian Network Learning: Revisiting the Superstructure

Robert Ganian · Viktoriia Korchemna

We investigate the parameterized complexity of Bayesian Network Structure Learning (BNSL), a classical problem that has received significant attention in empirical but also purely theoretical studies. We follow up on previous works that have analyzed the complexity of BNSL w.r.t. the so-called superstructure of the input. While known results imply that BNSL is unlikely to be fixed-parameter tractable even when parameterized by the size of a vertex cover in the superstructure, here we show that a different kind of parameterization - notably by the size of a feedback edge set - yields fixed-parameter tractability. We proceed by showing that this result can be strengthened to a localized version of the feedback edge set, and provide corresponding lower bounds that complement previous results to provide a complexity classification of BNSL w.r.t. virtually all well-studied graph parameters.We then analyze how the complexity of BNSL depends on the representation of the input. In particular, while the bulk of past theoretical work on the topic assumed the use of the so-called non-zero representation, here we prove that if an additive representation can be used instead then BNSL becomes fixed-parameter tractable even under significantly milder restrictions to the superstructure, notably when parameterized by the treewidth alone. Last but not least, we show how our results can be extended to the closely related problem of Polytree Learning.

Tue 7 Dec. 1:55 - 2:00 PST