5th Workshop on Meta-Learning
Abstract
Recent years have seen rapid progress in meta-learning methods, which transfer knowledge across tasks and domains to efficiently learn new tasks, optimize the learning process itself, and even generate new learning methods from scratch. Meta-learning can be seen as the logical conclusion of the arc that machine learning has undergone in the last decade, from learning classifiers, to learning representations, and finally to learning algorithms that themselves acquire representations, classifiers, and policies for acting in environments. In practice, meta-learning has been shown to yield new state-of-the-art automated machine learning methods, novel deep learning architectures, and substantially improved one-shot learning systems. Moreover, to improve one’s own learning capabilities through experience can also be viewed as a hallmark of intelligent beings, and neuroscience shows a strong connection between human and reward learning and the growing sub-field of meta-reinforcement learning.
Video
Schedule
|
|
|
3:10 AM
|
|
3:35 AM
|
|
|
|
4:00 AM
|
|
5:00 AM
|
|
5:25 AM
|
|
5:30 AM
|
|
5:55 AM
|
|
6:00 AM
|
|
7:00 AM
|
|
|
|
8:20 AM
|
|
8:45 AM
|
|
8:50 AM
|
|
10:00 AM
|
|
10:25 AM
|
|
10:30 AM
|
|
10:55 AM
|
|
|
|
11:20 AM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|