Skip to yearly menu bar Skip to main content

Workshop: Machine Learning in Structural Biology Workshop

Contrasting Sequence with Structure: \\Pre-training Graph Representations with PLMs

Louis Robinson · Timothy Atkinson · Liviu Copoiu · Patrick Bordes · Thomas PIERROT · Thomas Barrett


Understanding protein function is vital for drug discovery, disease diagnosis, and protein engineering. While Protein Language Models (PLMs) pre-trained on vast protein sequence datasets have achieved remarkable success, equivalent Protein Structure Models (PSMs) remain underrepresented. We attribute this to the relative lack of high-confidence structural data and suitable pre-training objectives. In this context, we introduce BioCLIP, a contrastive learning framework that pre-trains PSMs by leveraging PLMs, generating meaningful per-residue and per-chain structural representations. When evaluated on tasks such as protein-protein interaction, Gene Ontology annotation, and Enzyme Commission number prediction, BioCLIP-trained PSMs consistently outperform models trained from scratch and further enhance performance when merged with sequence embeddings. Notably, BioCLIP approaches, or exceeds, specialized methods across all benchmarks using its singular pre-trained design. Our work addresses the challenges of obtaining quality structural data and designing self-supervised objectives, setting the stage for more comprehensive models of protein function. Source code is publicly available.

Chat is not available.