Skip to yearly menu bar Skip to main content

Workshop: Socially Responsible Language Modelling Research (SoLaR)

Citation: A Key to Building Responsible and Accountable Large Language Models

Jie Huang · Kevin Chang


Large Language Models (LLMs) bring transformative benefits alongside unique challenges, including intellectual property (IP) and ethical concerns. This position paper explores a novel angle to mitigate these risks, drawing parallels between LLMs and established web systems. We identify "citation" as a crucial yet missing component in LLMs, which could enhance content transparency and verifiability while addressing IP and ethical dilemmas. We further propose that a comprehensive citation mechanism for LLMs should account for both non-parametric and parametric content. Despite the complexity of implementing such a mechanism, along with the inherent potential pitfalls, we advocate for its development. Building on this foundation, we outline several research problems in this area, aiming to guide future explorations towards building more responsible and accountable LLMs.

Chat is not available.