DiffTune: A Diffusion-Based Approach to Diverse Instruction-Tuning Data Generation
Abstract
Instruction tuning has become pivotal in enhancing the adaptability and responsiveness of Large Language Models (LLMs) to human instructions. Despite its critical role, current methods for generating instruction-tuning datasets exhibit significant bottlenecks, primarily in terms of high cost and limited diversity. However, as previously shown in the literature, the diversity of an instruction-tuning dataset is crucial to LLM's downstream performance. To address these challenges, we propose a Diffusion Language Model (DiffLM)-based technique to generate unlimited diverse instructions at a low cost. Specifically, we have enhanced the variability of instructions by strategically modifying the sampling process within the DiffLM. Our method presents the opportunity to augment any existing instruction-tuning dataset, thereby enriching its content and potential utility. Both automatic and human evaluation show that our generated instructions achieve high quality and better n-gram diversity than the original dataset. Instruction tuning of LLaMA on the augmented dataset delivers better instruction following capability and superior performance on a broad set of benchmarks, indicating the effectiveness of our instruction generation method.