Near-Optimal Non-Parametric Sequential Tests and Confidence Sequences with Possibly Dependent Observations - Nathan Kallus
in
Workshop: Adaptive Experimental Design and Active Learning in the Real World
Abstract
Sequential tests and their implied confidence sequences, which are valid at arbitrary stopping times, promise flexible statistical inference and on-the-fly decision making. However, strong guarantees are limited to parametric sequential tests, which suffer high type-I error rates in practice because reality isn't parametric, or to concentration-bound-based sequences, which are overly conservative so we get wide intervals and take too long to detect effects. We consider a classic delayed-start normal-mixture sequential probability ratio test and provide the first asymptotic (in the delay) analysis under general non-parametric data generating processes. We guarantee type-I-error rates approach a user-specified α-level (primarily by leveraging a martingale strong invariance principle). Moreover, we show that the expected time-to-reject approaches the minimum possible among all α-level tests (primarily by leveraging an identity inspired by Itô's lemma). Together, our results establish these (ostensibly parametric) tests as general-purpose, non-parametric, and near-optimal. We illustrate this via numerical experiments and a retrospective re-analysis of A/B tests at Netflix.