Poster

Sampling weights of deep neural networks

Erik L Bolager · Iryna Burak · Chinmay Datar · Qing Sun · Felix Dietrich

Great Hall & Hall B1+B2 (level 1) #635
[ ]
Thu 14 Dec 3 p.m. PST — 5 p.m. PST

Abstract: We introduce a probability distribution, combined with an efficient sampling algorithm, for weights and biases of fully-connected neural networks. In a supervised learning context, no iterative optimization or gradient computations of internal network parameters are needed to obtain a trained network. The sampling is based on the idea of random feature models. However, instead of a data-agnostic distribution, e.g., a normal distribution, we use both the input and the output training data to sample shallow and deep networks. We prove that sampled networks are universal approximators. For Barron functions, we show that the $L^2$-approximation error of sampled shallow networks decreases with the square root of the number of neurons. Our sampling scheme is invariant to rigid body transformations and scaling of the input data, which implies many popular pre-processing techniques are not required. In numerical experiments, we demonstrate that sampled networks achieve accuracy comparable to iteratively trained ones, but can be constructed orders of magnitude faster. Our test cases involve a classification benchmark from OpenML, sampling of neural operators to represent maps in function spaces, and transfer learning using well-known architectures.

Chat is not available.