Skip to yearly menu bar Skip to main content


An information-theoretic quantification of the content of communication between brain regions

Marco Celotto · Jan Bím · Alejandro Tlaie · Vito De Feo · Alessandro Toso · Stefan Lemke · Daniel Chicharro · Hamed Nili · Malte Bieler · Ileana Hanganu-Opatz · Tobias Donner · Andrea Brovelli · Stefano Panzeri

Great Hall & Hall B1+B2 (level 1) #421


Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information propagated between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional analytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously unaddressed feature-specific information flow.

Chat is not available.