Poster
Bottleneck Structure in Learned Features: Low-Dimension vs Regularity Tradeoff
Arthur Jacot
Great Hall & Hall B1+B2 (level 1) #1727
Abstract:
Previous work has shown that DNNs withlarge depth and -regularization are biased towards learninglow-dimensional representations of the inputs, which can be interpretedas minimizing a notion of rank of the learned function, conjectured to be the Bottleneck rank. We compute finite depthcorrections to this result, revealing a measure of regularitywhich bounds the pseudo-determinant of the Jacobian and is subadditive under composition and addition. This formalizesa balance between learning low-dimensional representations and minimizingcomplexity/irregularity in the feature maps, allowing the networkto learn the `right' inner dimension. Finally, we prove the conjecturedbottleneck structure in the learned features as : forlarge depths, almost all hidden representations are approximately-dimensional, and almost all weight matrices have singular values close to 1 while the others are. Interestingly, the use of large learning ratesis required to guarantee an order NTK which in turns guaranteesinfinite depth convergence of the representations of almost all layers.
Chat is not available.