Skip to yearly menu bar Skip to main content

Spotlight Poster

Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels

Zebin You · Yong Zhong · Fan Bao · Jiacheng Sun · Chongxuan LI · Jun Zhu

Great Hall & Hall B1+B2 (level 1) #545
[ ] [ Project Page ]
[ Paper [ Slides [ Poster [ OpenReview
Wed 13 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract: In an effort to further advance semi-supervised generative and classification tasks, we propose a simple yet effective training strategy called *dual pseudo training* (DPT), built upon strong semi-supervised learners and diffusion models. DPT operates in three stages: training a classifier on partially labeled data to predict pseudo-labels; training a conditional generative model using these pseudo-labels to generate pseudo images; and retraining the classifier with a mix of real and pseudo images. Empirically, DPT consistently achieves SOTA performance of semi-supervised generation and classification across various settings. In particular, with one or two labels per class, DPT achieves a Fréchet Inception Distance (FID) score of 3.08 or 2.52 on ImageNet $256\times256$. Besides, DPT outperforms competitive semi-supervised baselines substantially on ImageNet classification tasks, *achieving top-1 accuracies of 59.0 (+2.8), 69.5 (+3.0), and 74.4 (+2.0)* with one, two, or five labels per class, respectively. Notably, our results demonstrate that diffusion can generate realistic images with only a few labels (e.g., $<0.1$%) and generative augmentation remains viable for semi-supervised classification. Our code is available at **.

Chat is not available.