Skip to yearly menu bar Skip to main content

Oral Poster

Conformal Meta-learners for Predictive Inference of Individual Treatment Effects

Ahmed Alaa · Zaid Ahmad · Mark van der Laan

Great Hall & Hall B1+B2 (level 1) #821
[ ] [ Project Page ]
[ Paper [ Slides [ Poster [ OpenReview
Tue 12 Dec 3:15 p.m. PST — 5:15 p.m. PST
Oral presentation: Oral 2C Causality
Tue 12 Dec 1:40 p.m. PST — 2:40 p.m. PST


We investigate the problem of machine learning-based (ML) predictive inference on individual treatment effects (ITEs). Previous work has focused primarily on developing ML-based “meta-learners” that can provide point estimates of the conditional average treatment effect (CATE)—these are model-agnostic approaches for combining intermediate nuisance estimates to produce estimates of CATE. In this paper, we develop conformal meta-learners, a general framework for issuing predictive intervals for ITEs by applying the standard conformal prediction (CP) procedure on top of CATE meta-learners. We focus on a broad class of meta-learners based on two-stage pseudo-outcome regression and develop a stochastic ordering framework to study their validity. We show that inference with conformal meta-learners is marginally valid if their (pseudo-outcome) conformity scores stochastically dominate “oracle” conformity scores evaluated on the unobserved ITEs. Additionally, we prove that commonly used CATE meta-learners, such as the doubly-robust learner, satisfy a model- and distribution-free stochastic (or convex) dominance condition, making their conformal inferences valid for practically-relevant levels of target coverage. Whereas existing procedures conduct inference on nuisance parameters (i.e., potential outcomes) via weighted CP, conformal meta-learners enable direct inference on the target parameter (ITE). Numerical experiments show that conformal meta-learners provide valid intervals with competitive efficiency while retaining the favorable point estimation properties of CATE meta-learners.

Chat is not available.