Skip to yearly menu bar Skip to main content


ExPT: Synthetic Pretraining for Few-Shot Experimental Design

Tung Nguyen · Sudhanshu Agrawal · Aditya Grover

Great Hall & Hall B1+B2 (level 1) #1009
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Tue 12 Dec 3:15 p.m. PST — 5:15 p.m. PST


Experimental design is a fundamental problem in many science and engineering fields. In this problem, sample efficiency is crucial due to the time, money, and safety costs of real-world design evaluations. Existing approaches either rely on active data collection or access to large, labeled datasets of past experiments, making them impractical in many real-world scenarios. In this work, we address the more challenging yet realistic setting of few-shot experimental design, where only a few labeled data points of input designs and their corresponding values are available. We approach this problem as a conditional generation task, where a model conditions on a few labeled examples and the desired output to generate an optimal input design. To this end, we introduce Experiment Pretrained Transformers (ExPT), a foundation model for few-shot experimental design that employs a novel combination of synthetic pretraining with in-context learning. In ExPT, we only assume knowledge of a finite collection of unlabelled data points from the input domain and pretrain a transformer neural network to optimize diverse synthetic functions defined over this domain. Unsupervised pretraining allows ExPT to adapt to any design task at test time in an in-context fashion by conditioning on a few labeled data points from the target task and generating the candidate optima. We evaluate ExPT on few-shot experimental design in challenging domains and demonstrate its superior generality and performance compared to existing methods. The source code is available at

Chat is not available.