ReTR: Modeling Rendering Via Transformer for Generalizable Neural Surface Reconstruction

Yixun Liang · Hao He · Yingcong Chen

Great Hall & Hall B1+B2 (level 1) #205
[ ] [ Project Page ]
Tue 12 Dec 3:15 p.m. PST — 5:15 p.m. PST

Abstract: Generalizable neural surface reconstruction techniques have attracted great attention in recent years. However, they encounter limitations of low confidence depth distribution and inaccurate surface reasoning due to the oversimplified volume rendering process employed. In this paper, we present Reconstruction TRansformer (ReTR), a novel framework that leverages the transformer architecture to redesign the rendering process, enabling complex render interaction modeling. It introduces a learnable $\textit{meta-ray token}$ and utilizes the cross-attention mechanism to simulate the interaction of rendering process with sampled points and render the observed color. Meanwhile, by operating within a high-dimensional feature space rather than the color space, ReTR mitigates sensitivity to projected colors in source views. Such improvements result in accurate surface assessment with high confidence. We demonstrate the effectiveness of our approach on various datasets, showcasing how our method outperforms the current state-of-the-art approaches in terms of reconstruction quality and generalization ability. $\textit{Our code is available at }$

Chat is not available.