Spotlight Poster

The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications

Mirac Suzgun · Luke Melas-Kyriazi · Suproteem Sarkar · Scott D Kominers · Stuart Shieber

Great Hall & Hall B1+B2 (level 1) #429
[ ] [ Project Page ]
Thu 14 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract:

Innovation is a major driver of economic and social development, and information about many kinds of innovation is embedded in semi-structured data from patents and patent applications. Though the impact and novelty of innovations expressed in patent data are difficult to measure through traditional means, machine learning offers a promising set of techniques for evaluating novelty, summarizing contributions, and embedding semantics. In this paper, we introduce the Harvard USPTO Patent Dataset (HUPD), a large-scale, well-structured, and multi-purpose corpus of English-language patent applications filed to the United States Patent and Trademark Office (USPTO) between 2004 and 2018. With more than 4.5 million patent documents, HUPD is two to three times larger than comparable corpora. Unlike other NLP patent datasets, HUPD contains the inventor-submitted versions of patent applications, not the final versions of granted patents, allowing us to study patentability at the time of filing using NLP methods for the first time. It is also novel in its inclusion of rich structured data alongside the text of patent filings: By providing each application’s metadata along with all of its text fields, HUPD enables researchers to perform new sets of NLP tasks that leverage variation in structured covariates. As a case study on the types of research HUPD makes possible, we introduce a new task to the NLP community -- patent acceptance prediction. We additionally show the structured metadata provided in HUPD allows us to conduct explicit studies of concept shifts for this task. We find that performance on patent acceptance prediction decays when models trained in one context are evaluated on different innovation categories and over time. Finally, we demonstrate how HUPD can be used for three additional tasks: Multi-class classification of patent subject areas, language modeling, and abstractive summarization. Put together, our publicly-available dataset aims to advance research extending language and classification models to diverse and dynamic real-world data distributions.

Chat is not available.