OpenAGI: When LLM Meets Domain Experts

Yingqiang Ge · Wenyue Hua · Kai Mei · jianchao ji · Juntao Tan · Shuyuan Xu · Zelong Li · Yongfeng Zhang

Great Hall & Hall B1+B2 (level 1) #809
[ ] [ Project Page ]
Thu 14 Dec 3 p.m. PST — 5 p.m. PST


Human Intelligence (HI) excels at combining basic skills to solve complex tasks. This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents, enabling them to harness expert models for complex task-solving towards Artificial General Intelligence (AGI). Large Language Models (LLMs) show promising learning and reasoning abilities, and can effectively use external models, tools, plugins, or APIs to tackle complex problems. In this work, we introduce OpenAGI, an open-source AGI research and development platform designed for solving multi-step, real-world tasks. Specifically, OpenAGI uses a dual strategy, integrating standard benchmark tasks for benchmarking and evaluation, and open-ended tasks including more expandable models, tools, plugins, or APIs for creative problem-solving. Tasks are presented as natural language queries to the LLM, which then selects and executes appropriate models. We also propose a Reinforcement Learning from Task Feedback (RLTF) mechanism that uses task results to improve the LLM's task-solving ability, which creates a self-improving AI feedback loop. While we acknowledge that AGI is a broad and multifaceted research challenge with no singularly defined solution path, the integration of LLMs with domain-specific expert models, inspired by mirroring the blend of general and specialized intelligence in humans, offers a promising approach towards AGI. We are open-sourcing the OpenAGI project's code, dataset, benchmarks, evaluation methods, and the UI demo to foster community involvement in AGI advancement:

Chat is not available.