Poster

EHRXQA: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images

Seongsu Bae · Daeun Kyung · Jaehee Ryu · Eunbyeol Cho · Gyubok Lee · Sunjun Kweon · Jungwoo Oh · Lei Ji · Eric Chang · Tackeun Kim · Edward Choi

Great Hall & Hall B1+B2 (level 1) #333
[ ] [ Project Page ]
Tue 12 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract:

Electronic Health Records (EHRs), which contain patients' medical histories in various multi-modal formats, often overlook the potential for joint reasoning across imaging and table modalities underexplored in current EHR Question Answering (QA) systems. In this paper, we introduce EHRXQA, a novel multi-modal question answering dataset combining structured EHRs and chest X-ray images. To develop our dataset, we first construct two uni-modal resources: 1) The MIMIC- CXR-VQA dataset, our newly created medical visual question answering (VQA) benchmark, specifically designed to augment the imaging modality in EHR QA, and 2) EHRSQL (MIMIC-IV), a refashioned version of a previously established table-based EHR QA dataset. By integrating these two uni-modal resources, we successfully construct a multi-modal EHR QA dataset that necessitates both uni-modal and cross-modal reasoning. To address the unique challenges of multi-modal questions within EHRs, we propose a NeuralSQL-based strategy equipped with an external VQA API. This pioneering endeavor enhances engagement with multi-modal EHR sources and we believe that our dataset can catalyze advances in real-world medical scenarios such as clinical decision-making and research. EHRXQA is available at https://github.com/baeseongsu/ehrxqa.

Chat is not available.