Skip to yearly menu bar Skip to main content


Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research

Cole Gulino · Justin Fu · Wenjie Luo · George Tucker · Eli Bronstein · Yiren Lu · Jean Harb · Xinlei Pan · Yan Wang · Xiangyu Chen · John Co-Reyes · Rishabh Agarwal · Rebecca Roelofs · Yao Lu · Nico Montali · Paul Mougin · Zoey Yang · Brandyn White · Aleksandra Faust · Rowan McAllister · Dragomir Anguelov · Benjamin Sapp

Great Hall & Hall B1+B2 (level 1) #2016
[ ]
Tue 12 Dec 8:45 a.m. PST — 10:45 a.m. PST


Simulation is an essential tool to develop and benchmark autonomous vehicle planning software in a safe and cost-effective manner. However, realistic simulation requires accurate modeling of multi-agent interactive behaviors to be trustworthy, behaviors which can be highly nuanced and complex. To address these challenges, we introduce Waymax, a new data-driven simulator for autonomous driving in multi-agent scenes, designed for large-scale simulation and testing. Waymax uses publicly-released, real-world driving data (e.g., the Waymo Open Motion Dataset) to initialize or play back a diverse set of multi-agent simulated scenarios. It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training, making it suitable for modern large-scale, distributed machine learning workflows. To support online training and evaluation, Waymax includes several learned and hard-coded behavior models that allow for realistic interaction within simulation. To supplement Waymax, we benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions, where we highlight the effectiveness of routes as guidance for planning agents and the ability of RL to overfit against simulated agents.

Chat is not available.