Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

26 Results

<<   <   Page 1 of 3   >   >>
Workshop
ELUQuant: Event-Level Uncertainty Quantification using Physics-Informed Bayesian Neural Networks with Flow approximated Posteriors - A DIS Study
Cristiano Fanelli · James Giroux
Poster
Wed 15:00 Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks
Ziyi Huang · Henry Lam · Haofeng Zhang
Workshop
Predictive Uncertainty Quantification for Graph Neural Network Driven Relaxed Energy Calculations
Joseph Musielewicz · Janice Lan · Matt Uyttendaele
Poster
Tue 8:45 Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer · Lukas Aichberger · Mykyta Ielanskyi · Günter Klambauer · Sepp Hochreiter
Poster
Thu 15:00 Uncertainty Quantification over Graph with Conformalized Graph Neural Networks
Kexin Huang · Ying Jin · Emmanuel Candes · Jure Leskovec
Workshop
Uncertainty Quantification of the Madden–Julian Oscillation with Gaussian Processes
Haoyuan Chen · Emil Constantinescu · Vishwas Rao · Cristiana Stan
Workshop
Evaluating Uncertainty Quantification approaches for Neural PDEs in scientific application
Vardhan Dongre · Gurpreet Singh Hora
Poster
Wed 8:45 PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen · Wai Hoh Tang · Zhun Deng · Apostolos Psaros · Kenji Kawaguchi
Workshop
Data-Driven Autoencoder Numerical Solver with Uncertainty Quantification for Fast Physical Simulations
Christophe Bonneville · Youngsoo Choi · Debojyoti Ghosh · Jon Belof
Workshop
Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification
Shuge Lei
Workshop
Evaluating Uncertainty Quantification approaches for Neural PDEs in scientific application
Vardhan Dongre · Gurpreet Singh Hora
Poster
Tue 15:15 Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis · Kolyan Ray