Skip to yearly menu bar Skip to main content

Oral Session

Oral 4C COT/reasoning

Room R06-R09 (level 2)
Wed 13 Dec 1:30 p.m. PST — 2:30 p.m. PST


Wed 13 Dec. 13:30 - 13:45 PST

Why think step by step? Reasoning emerges from the locality of experience

Ben Prystawski · Michael Li · Noah Goodman

Humans have a powerful and mysterious capacity to reason. Working through a set of mental steps enables us to make inferences we would not be capable of making directly even though we get no additional data from the world. Similarly, when large language models generate intermediate steps (a chain of thought) before answering a question, they often produce better answers than they would directly. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of overlapping local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables reduces bias, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis experimentally in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models’ ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables. The combination of locally structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.

Wed 13 Dec. 13:45 - 14:00 PST

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Shunyu Yao · Dian Yu · Jeffrey Zhao · Izhak Shafran · Tom Griffiths · Yuan Cao · Karthik Narasimhan

Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought approach to prompting language models, and enables exploration over coherent units of text (thoughts) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices.Our experiments show that ToT significantly enhances language models’ problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4\% of tasks, our method achieved a success rate of 74\%. Code repo with all prompts:

Wed 13 Dec. 14:00 - 14:15 PST

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Yu Bai · Fan Chen · Huan Wang · Caiming Xiong · Song Mei

Neural sequence models based on the transformer architecture have demonstrated remarkable \emph{in-context learning} (ICL) abilities, where they can perform new tasks when prompted with training and test examples, without any parameter update to the model. This work first provides a comprehensive statistical theory for transformers to perform ICL. Concretely, we show that transformers can implement a broad class of standard machine learning algorithms in context, such as least squares, ridge regression, Lasso, learning generalized linear models, and gradient descent on two-layer neural networks, with near-optimal predictive power on various in-context data distributions. Using an efficient implementation of in-context gradient descent as the underlying mechanism, our transformer constructions admit mild size bounds, and can be learned with polynomially many pretraining sequences. Building on these ``base'' ICL algorithms, intriguingly, we show that transformers can implement more complex ICL procedures involving \emph{in-context algorithm selection}, akin to what a statistician can do in real life---A \emph{single} transformer can adaptively select different base ICL algorithms---or even perform qualitatively different tasks---on different input sequences, without any explicit prompting of the right algorithm or task. We both establish this in theory by explicit constructions, and also observe this phenomenon experimentally. In theory, we construct two general mechanisms for algorithm selection with concrete examples: pre-ICL testing, and post-ICL validation. As an example, we use the post-ICL validation mechanism to construct a transformer that can perform nearly Bayes-optimal ICL on a challenging task---noisy linear models with mixed noise levels. Experimentally, we demonstrate the strong in-context algorithm selection capabilities of standard transformer architectures.

Wed 13 Dec. 14:15 - 14:30 PST

Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective

Guhao Feng · Bohang Zhang · Yuntian Gu · Haotian Ye · Di He · Liwei Wang

Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying their power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.