Fri 7:00 a.m. - 7:01 a.m.
|
Opening Remarks
(
Opening remarks
)
>
SlidesLive Video
|
Crist贸bal Guzm谩n
馃敆
|
Fri 7:00 a.m. - 7:30 a.m.
|
DoG is SGD鈥檚 best friend: toward tuning-free stochastic optimization, Yair Carmon
(
Plenary speaker
)
>
SlidesLive Video
|
Yair Carmon
馃敆
|
Fri 7:30 a.m. - 8:00 a.m.
|
Contributed Talks 1: *Escaping mediocrity: how two-layer networks learn hard generalized linear models* and *Last Iterate Convergence of Popov Method for Non-monotone Stochastic Variational Inequalities*
(
Contributed talks
)
>
SlidesLive Video
|
Bruno Loureiro 路 Daniil Vankov 路 Courtney Paquette
馃敆
|
Fri 8:00 a.m. - 9:00 a.m.
|
Poster Session 1
|
42 presenters
Egor Shulgin 路 Mingzhen He 路 Hanmin Li 路 Thibault Lahire 路 Eric Zelikman 路 Damien Scieur 路 Rajat Vadiraj Dwaraknath 路 Gene Li 路 Zhanhong Jiang 路 Rahul Jain 路 Zihan Zhou 路 Tianyue Zhang 路 Ilyas Fatkhullin 路 Frederik Kunstner 路 Utkarsh Singhal 路 Bruno Loureiro 路 Krishna C Kalagarla 路 Kai Liu 路 Michal Derezinski 路 Ross Clarke 路 Dimitri Papadimitriou 路 Mo Zhou 路 J枚rg Franke 路 Chandler Smith 路 Darshan Chakrabarti 路 Trang H. Tran 路 Mokhwa Lee 路 Wei Kuang 路 Vincent Roulet 路 John Lazarsfeld 路 Donghyun Oh 路 Yihe Deng 路 Fu Wang 路 Junchi YANG 路 D谩niel R谩cz 路 Jeffrey Flanigan 路 Aaron Mishkin 路 Luca Scharr 路 Robert Gower 路 Chaoyue Liu 路 Yushen Huang 路 Nicholas Recker
馃敆
|
Fri 9:00 a.m. - 9:30 a.m.
|
Contributed Talks 2: *An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization* and *Practical Principled Policy Optimization for Finite MDPs*
(
Contributed talks
)
>
SlidesLive Video
|
Guy Kornowski 路 Michael Lu 路 Aaron Sidford
馃敆
|
Fri 9:30 a.m. - 10:00 a.m.
|
Aiming towards the minimizers: fast convergence of SGD for overparameterized problems, Dmitriy Drusvyatskiy
(
Plenary speaker
)
>
SlidesLive Video
|
Dmitriy Drusvyatskiy
馃敆
|
Fri 10:00 a.m. - 12:00 p.m.
|
Lunch
|
馃敆
|
Fri 12:00 p.m. - 12:30 p.m.
|
Evaluating Large-Scale Learning Systems, Virginia Smith
(
Plenary speaker
)
>
SlidesLive Video
|
Virginia Smith
馃敆
|
Fri 12:30 p.m. - 1:00 p.m.
|
Contributed Talks 3: *Dueling Optimization with a Monotone Adversary* and *High-Dimensional Prediction for Sequential Decision Making*
(
Contributed talks
)
>
SlidesLive Video
|
Naren Manoj 路 Georgy Noarov 路 Crist贸bal Guzm谩n
馃敆
|
Fri 1:00 p.m. - 2:00 p.m.
|
Poster Session 2
|
43 presenters
Xiao-Yang Liu 路 Guy Kornowski 路 Philipp Dahlinger 路 Abbas Ehsanfar 路 Binyamin Perets 路 David Martinez-Rubio 路 Sudeep Raja Putta 路 Runlong Zhou 路 Connor Lawless 路 Julian J Stier 路 Chen Fan 路 Michal 艩ustr 路 James Spann 路 Jung Hun Oh 路 Yao Xie 路 Qi Zhang 路 Krishna Acharya 路 Sourabh Medapati 路 Sharan Vaswani 路 Sruthi Gorantla 路 Mohamed Elsayed 路 Hongyang Zhang 路 Reza Asad 路 Viktor Pavlovic 路 Betty Shea 路 Georgy Noarov 路 Chuan He 路 Daniil Vankov 路 Taoan Huang 路 Michael Lu 路 Anant Mathur 路 Konstantin Mishchenko 路 Stanley Wei 路 Francesco Faccio 路 Yuchen Zeng 路 Tianyue Zhang 路 Chris Junchi Li 路 Aaron Mishkin 路 Sina Baharlouei 路 Chen Xu 路 Sasha Abramowitz 路 Sebastian Stich 路 Felix Dangel
馃敆
|
Fri 2:00 p.m. - 2:30 p.m.
|
Sharply predicting the behavior of complex iterative algorithms with random data, Ashwin Pananjady
(
Plenary speaker
)
>
SlidesLive Video
|
Ashwin Pananjady
馃敆
|
Fri 2:30 p.m. - 3:00 p.m.
|
Provable Feature Learning in Gradient Descent, Jason Lee
(
Plenary speaker
)
>
SlidesLive Video
|
Jason Lee
馃敆
|
Fri 3:00 p.m. - 3:01 p.m.
|
Closing Remarks
(
Closing
)
>
|
Crist贸bal Guzm谩n
馃敆
|
-
|
Det-CGD: Compressed Gradient Descent with Matrix Stepsizes for Non-Convex Optimization
(
Poster
)
>
link
|
Hanmin Li 路 Avetik Karagulyan 路 Peter Richtarik
馃敆
|
-
|
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
(
Poster
)
>
link
|
David Martinez-Rubio 路 Christophe Roux 路 Christopher Criscitiello 路 Sebastian Pokutta
馃敆
|
-
|
Risk Bounds of Accelerated SGD for Overparameterized Linear Regression
(
Poster
)
>
link
|
Xuheng Li 路 Yihe Deng 路 Jingfeng Wu 路 Dongruo Zhou 路 Quanquan Gu
馃敆
|
-
|
Follow the flow: Proximal flow inspired multi-step methods
(
Poster
)
>
link
|
Yushen Huang 路 Yifan Sun
馃敆
|
-
|
A Predicting Clipping Asynchronous Stochastic Gradient Descent Method in Distributed Learning
(
Poster
)
>
link
|
Haoxiang Wang 路 Zhanhong Jiang 路 Chao Liu 路 Soumik Sarkar 路 Dongxiang Jiang 路 Young Lee
馃敆
|
-
|
Last Iterate Convergence of Popov Method for Non-monotone Stochastic Variational Inequalities
(
Oral
)
>
link
|
Daniil Vankov 路 Angelia Nedich 路 Lalitha Sankar
馃敆
|
-
|
Generalisable Agents for Neural Network Optimisation
(
Poster
)
>
link
|
Kale-ab Tessera 路 Callum R. Tilbury 路 Sasha Abramowitz 路 Ruan John de Kock 路 Omayma Mahjoub 路 Benjamin Rosman 路 Sara Hooker 路 Arnu Pretorius
馃敆
|
-
|
Accelerated gradient descent: A guaranteed bound for a heuristic restart strategy
(
Poster
)
>
link
|
Walaa Moursi 路 Stephen Vavasis 路 Viktor Pavlovic
馃敆
|
-
|
Adagrad Promotes Diffuse Solutions In Overparameterized Regimes
(
Poster
)
>
link
|
Andrew Rambidis 路 Jiayi Wang
馃敆
|
-
|
Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs
(
Poster
)
>
link
|
Zihan Zhou 路 Honghao Wei 路 Lei Ying
馃敆
|
-
|
Reducing Predict and Optimize to Convex Feasibility
(
Poster
)
>
link
|
Saurabh Mishra 路 Sharan Vaswani
馃敆
|
-
|
Diversity-adjusted adaptive step size
(
Poster
)
>
link
|
Parham Yazdkhasti 路 Xiaowen Jiang 路 Sebastian Stich
馃敆
|
-
|
Global CFR: Meta-Learning in Self-Play Regret Minimization
(
Poster
)
>
link
|
David Sychrovsk媒 路 Michal Sustr 路 Michael Bowling 路 Martin Schmid
馃敆
|
-
|
Noise Injection Irons Out Local Minima and Saddle Points
(
Poster
)
>
link
|
Konstantin Mishchenko 路 Sebastian Stich
馃敆
|
-
|
How to Guess a Gradient
(
Poster
)
>
link
|
Utkarsh Singhal 路 Brian Cheung 路 Kartik Chandra 路 Jonathan Ragan-Kelley 路 Josh Tenenbaum 路 Tomaso Poggio 路 Stella X. Yu
馃敆
|
-
|
Stochastic FISTA Step Search Algorithm for Convex Optimization
(
Poster
)
>
link
|
Trang H. Tran 路 Lam Nguyen 路 Katya Scheinberg
馃敆
|
-
|
K-Spin Ising Model for Combinatorial Optimizations over Graphs: An Reinforcement Learning Approach
(
Poster
)
>
link
|
Xiao-Yang Liu 路 Ming Zhu
馃敆
|
-
|
Parameter-Agnostic Optimization under Relaxed Smoothness
(
Poster
)
>
link
|
Florian H眉bler 路 Junchi YANG 路 Xiang Li 路 Niao He
馃敆
|
-
|
Escaping mediocrity: how two-layer networks learn hard generalized linear models
(
Oral
)
>
link
|
Luca Arnaboldi 路 Florent Krzakala 路 Bruno Loureiro 路 Ludovic Stephan
馃敆
|
-
|
The Expressive Power of Low-Rank Adaptation
(
Poster
)
>
link
|
Yuchen Zeng 路 Kangwook Lee
馃敆
|
-
|
FaDE: Fast DARTS Estimator on Hierarchical NAS Spaces
(
Poster
)
>
link
|
Simon Neumeyer 路 Julian J Stier 路 Michael Granitzer
馃敆
|
-
|
Nesterov Meets Robust Multitask Learning Twice
(
Poster
)
>
link
|
Yifan Kang 路 Kai Liu
馃敆
|
-
|
On the Interplay Between Stepsize Tuning and Progressive Sharpening
(
Poster
)
>
link
|
Vincent Roulet 路 Atish Agarwala 路 Fabian Pedregosa
馃敆
|
-
|
Why Adam Outperforms Gradient Descent on Language Models: A Heavy-Tailed Class Imbalance Problem
(
Poster
)
>
link
|
Robin Yadav 路 Frederik Kunstner 路 Mark Schmidt 路 Alberto Bietti
馃敆
|
-
|
Level Set Teleportation: the Good, the Bad, and the Ugly
(
Poster
)
>
link
|
Aaron Mishkin 路 Alberto Bietti 路 Robert Gower
馃敆
|
-
|
An alternative approach to train neural networks using monotone variational inequality
(
Poster
)
>
link
|
Chen Xu 路 Xiuyuan Cheng 路 Yao Xie
馃敆
|
-
|
Safe Posterior Sampling for Constrained MDPs with Bounded Constraint Violation
(
Poster
)
>
link
|
Krishna C Kalagarla 路 Rahul Jain 路 Pierluigi Nuzzo
馃敆
|
-
|
Average-Constrained Policy Optimization
(
Poster
)
>
link
|
Akhil Agnihotri 路 Rahul Jain 路 Haipeng Luo
馃敆
|
-
|
A novel analysis of gradient descent under directional smoothness
(
Poster
)
>
link
|
Aaron Mishkin 路 Ahmed Khaled 路 Aaron Defazio 路 Robert Gower
馃敆
|
-
|
The Sharp Power Law of Local Search on Expanders
(
Poster
)
>
link
|
Nicholas Recker 路 Simina Branzei 路 Davin Choo
馃敆
|
-
|
Regret Bounds for Optimistic Follow The Leader: Applications in Portfolio Selection and Linear Regression
(
Poster
)
>
link
|
Sudeep Raja Putta 路 Shipra Agrawal
馃敆
|
-
|
Bandit-Driven Batch Selection for Robust Learning under Label Noise
(
Poster
)
>
link
|
Michal Lisicki 路 Mihai Nica 路 Graham Taylor
馃敆
|
-
|
Practical Principled Policy Optimization for Finite MDPs
(
Oral
)
>
link
|
Michael Lu 路 Matin Aghaei 路 Anant Raj 路 Sharan Vaswani
馃敆
|
-
|
Adaptive Gradient Methods at the Edge of Stability
(
Poster
)
>
link
|
Jeremy M Cohen 路 Behrooz Ghorbani 路 Shankar Krishnan 路 Naman Agarwal 路 Sourabh Medapati 路 Michal Badura 路 Daniel Suo 路 Zachary Nado 路 George Dahl 路 Justin Gilmer
馃敆
|
-
|
Non-Uniform Sampling and Adaptive Optimizers in Deep Learning
(
Poster
)
>
link
|
Thibault Lahire
馃敆
|
-
|
Large-scale Non-convex Stochastic Constrained Distributionally Robust Optimization
(
Poster
)
>
link
|
Qi Zhang 路 Shaofeng Zou 路 Yi Zhou 路 Lixin Shen 路 Ashley Prater-Bennette
馃敆
|
-
|
Information-Theoretic Trust Regions for Stochastic Gradient-Based Optimization
(
Poster
)
>
link
|
Philipp Dahlinger 路 Philipp Becker 路 Maximilian H眉ttenrauch 路 Gerhard Neumann
馃敆
|
-
|
Decentralized Learning Dynamics in the Gossip Model
(
Poster
)
>
link
|
John Lazarsfeld 路 Dan Alistarh
馃敆
|
-
|
Almost multisecant BFGS quasi-Newton method
(
Poster
)
>
link
|
Mokhwa Lee 路 Yifan Sun
馃敆
|
-
|
From 6235149080811616882909238708 to 29: Vanilla Thompson Sampling Revisited
(
Poster
)
>
link
|
Bingshan Hu 路 Tianyue Zhang
馃敆
|
-
|
Utility-based Perturbed Gradient Descent: An Optimizer for Continual Learning
(
Poster
)
>
link
|
Mohamed Elsayed 路 Rupam Mahmood
馃敆
|
-
|
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
(
Poster
)
>
link
|
Tao Li 路 Weihao weihao 路 Qinghua Tao 路 Zehao Lei 路 Yingwen Wu 路 Kun Fang 路 Mingzhen He 路 Xiaolin Huang
馃敆
|
-
|
MSL: An Adaptive Momentem-based Stochastic Line-search Framework
(
Poster
)
>
link
|
Chen Fan 路 Sharan Vaswani 路 Christos Thrampoulidis 路 Mark Schmidt
馃敆
|
-
|
Noise Stability Optimization for Flat Minima with Tight Rates
(
Poster
)
>
link
|
Haotian Ju 路 Dongyue Li 路 Hongyang Zhang
馃敆
|
-
|
Dueling Optimization with a Monotone Adversary
(
Oral
)
>
link
|
Avrim Blum 路 Meghal Gupta 路 Gene Li 路 Naren Manoj 路 Aadirupa Saha 路 Yuanyuan Yang
馃敆
|
-
|
Noise-adaptive (Accelerated) Stochastic Heavy-Ball Momentum
(
Poster
)
>
link
|
Anh Dang 路 Reza Babanezhad Harikandeh 路 Sharan Vaswani
馃敆
|
-
|
Unnormalized Density Estimation with Root Sobolev Norm Regularization
(
Poster
)
>
link
|
Mark Kozdoba 路 Binyamin Perets 路 Shie Mannor
馃敆
|
-
|
Accelerating Inexact HyperGradient Descent for Bilevel Optimization
(
Poster
)
>
link
|
Yang Haikuo 路 Luo Luo 路 Chris Junchi Li 路 Michael Jordan 路 Maryam Fazel
馃敆
|
-
|
High Dimensional Unbiased Estimation for Sequential Decision Making
(
Oral
)
>
link
|
Georgy Noarov 路 Ramya Ramalingam 路 Aaron Roth 路 Stephan Xie
馃敆
|
-
|
Efficient Learning in Polyhedral Games via Best Response Oracles
(
Poster
)
>
link
|
Darshan Chakrabarti 路 Gabriele Farina 路 Christian Kroer
馃敆
|
-
|
On the Convergence of Local SGD Under Third-Order Smoothness and Hessian Similarity
(
Poster
)
>
link
|
Ali Zindari 路 Ruichen Luo 路 Sebastian Stich
馃敆
|
-
|
Adam through a Second-Order Lens
(
Poster
)
>
link
|
Ross Clarke 路 Baiyu Su 路 Jos茅 Miguel Hern谩ndez-Lobato
馃敆
|
-
|
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
(
Poster
)
>
link
|
Nuoya Xiong 路 Lijun Ding 路 Simon Du
馃敆
|
-
|
Exploring Modern Evolution Strategies in Portfolio Optimization
(
Poster
)
>
link
|
Ramin Hasani 路 Abbas Ehsanfar 路 Greg Banis 路 Rusty Bealer 路 Amir Ahmadi
馃敆
|
-
|
Greedy Newton: Newton's Method with Exact Line Search
(
Poster
)
>
link
|
Betty Shea 路 Mark Schmidt
馃敆
|
-
|
A proximal augmented Lagrangian based algorithm for federated learning with constraints
(
Poster
)
>
link
|
Chuan He 路 Le Peng 路 Ju Sun
馃敆
|
-
|
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC for Large Neural Nets
(
Poster
)
>
link
|
Wu Lin 路 Felix Dangel 路 Runa Eschenhagen 路 Kirill Neklyudov 路 Agustinus Kristiadi 路 Richard Turner 路 Alireza Makhzani
馃敆
|
-
|
Statistical Inference of Adaptive Inexact Stochastic Newton Method
(
Poster
)
>
link
|
Wei Kuang 路 Sen Na 路 Mihai Anitescu
馃敆
|
-
|
f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization
(
Poster
)
>
link
|
Sina Baharlouei 路 Shivam Patel 路 Meisam Razaviyayn
馃敆
|
-
|
Oracle Efficient Algorithms for Groupwise Regret
(
Poster
)
>
link
|
Krishna Acharya 路 Eshwar Ram Arunachaleswaran 路 Juba Ziani 路 Aaron Roth 路 Sampath Kannan
馃敆
|
-
|
(Un)certainty selection methods for Active Learning on Label Distributions
(
Poster
)
>
link
|
James Spann 路 Christopher Homan
馃敆
|
-
|
SGD batch saturation for training wide neural networks
(
Poster
)
>
link
|
Chaoyue Liu 路 Dmitriy Drusvyatskiy 路 Misha Belkin 路 Damek Davis 路 Yian Ma
馃敆
|
-
|
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
(
Poster
)
>
link
|
Michal Derezinski
馃敆
|
-
|
Enhancing the Misreport Network for Optimal Auction Design
(
Poster
)
>
link
|
Haiying Wu 路 shuyuan you 路 Zhiqiang Zhuang 路 Kewen Wang 路 Zhe Wang
馃敆
|
-
|
Towards a Better Theoretical Understanding of Independent Subnetwork Training
(
Poster
)
>
link
|
Egor Shulgin 路 Peter Richtarik
馃敆
|
-
|
Adaptive Quasi-Newton and Anderson Acceleration Framework with Explicit Global (Accelerated) Convergence Rates
(
Poster
)
>
link
|
Damien Scieur
馃敆
|
-
|
Sion's Minimax Theorem in Geodesic Metric Spaces and a Riemannian Extragradient Algorithm
(
Poster
)
>
link
|
Peiyuan Zhang 路 Jingzhao Zhang 路 Suvrit Sra
馃敆
|
-
|
Cup Curriculum: Curriculum Learning on Model Capacity
(
Poster
)
>
link
|
Luca Scharr 路 Vanessa Toborek
馃敆
|
-
|
An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization
(
Oral
)
>
link
|
Guy Kornowski 路 Ohad Shamir
馃敆
|
-
|
Fair Minimum Representation Clustering
(
Poster
)
>
link
|
Connor Lawless 路 Oktay Gunluk
馃敆
|
-
|
Fair Representation in Submodular Subset Selection: A Pareto Optimization Approach
(
Poster
)
>
link
|
Adriano Fazzone 路 Yanhao Wang 路 Francesco Bonchi
馃敆
|
-
|
New Horizons in Parameter Regularization: A Constraint Approach
(
Poster
)
>
link
|
J枚rg Franke 路 Michael Hefenbrock 路 Gregor Koehler 路 Frank Hutter
馃敆
|
-
|
Continually Adapting Optimizers Improve Meta-Generalization
(
Poster
)
>
link
|
Wenyi Wang 路 Louis Kirsch 路 Francesco Faccio 路 Mingchen Zhuge 路 J眉rgen Schmidhuber
馃敆
|
-
|
Surrogate Minimization: An Optimization Algorithm for Training Large Neural Networks with Model Parallelism
(
Poster
)
>
link
|
Reza Asad 路 Reza Babanezhad Harikandeh 路 Issam Hadj Laradji 路 Nicolas Le Roux 路 Sharan Vaswani
馃敆
|
-
|
On the Parallel Complexity of Multilevel Monte Carlo in Stocahstic Gradient Descent
(
Poster
)
>
link
|
Kei Ishikawa
馃敆
|
-
|
Pruning Neural Networks with Velocity-Constrained Optimization
(
Poster
)
>
link
|
Donghyun Oh 路 Jinseok Chung 路 Namhoon Lee
馃敆
|
-
|
Feature Selection in Generalized Linear models via the Lasso: To Scale or Not to Scale?
(
Poster
)
>
link
|
Anant Mathur 路 Sarat Moka
馃敆
|
-
|
DIRECT Optimisation with Bayesian Insights: Assessing Reliability Under Fixed Computational Budgets
(
Poster
)
>
link
|
Fu Wang 路 Zeyu Fu 路 Xiaowei Huang 路 Wenjie Ruan
馃敆
|
-
|
Understanding the Role of Optimization in Double Descent
(
Poster
)
>
link
|
Chris Liu 路 Jeffrey Flanigan
馃敆
|
-
|
Variance Reduced Model Based Methods: New rates and adaptive step sizes
(
Poster
)
>
link
|
Robert Gower 路 Frederik Kunstner 路 Mark Schmidt
馃敆
|
-
|
On the convergence of warped proximal iterations for solving nonmonotone inclusions and applications
(
Poster
)
>
link
|
Dimitri Papadimitriou 路 Bang Cong Vu
馃敆
|
-
|
On the Synergy Between Label Noise and Learning Rate Annealing in Neural Network Training
(
Poster
)
>
link
|
Stanley Wei 路 Tongzheng Ren 路 Simon Du
馃敆
|
-
|
Optimizing Group-Fair Plackett-Luce Ranking Models for Relevance and Ex-Post Fairness
(
Poster
)
>
link
|
Sruthi Gorantla 路 Eshaan Bhansali 路 Amit Deshpande 路 Anand Louis
馃敆
|
-
|
Contrastive Predict-and-Search for Mixed Integer Linear Programs
(
Poster
)
>
link
|
Taoan Huang 路 Aaron Ferber 路 Arman Zharmagambetov 路 Yuandong Tian 路 Bistra Dilkina
馃敆
|
-
|
Optimization dependent generalization bound for ReLU networks based on sensitivity in the tangent bundle
(
Poster
)
>
link
|
D谩niel R谩cz 路 Mihaly Petreczky 路 Balint Daroczy
馃敆
|
-
|
Riemannian Optimization for Euclidean Distance Geometry
(
Poster
)
>
link
|
Chandler Smith 路 Samuel Lichtenberg 路 HanQin Cai 路 Abiy Tasissa
馃敆
|
-
|
GUC: Unsupervised non-parametric Global Clustering and Anomaly Detection
(
Poster
)
>
link
|
Chris Solomou
馃敆
|
-
|
Testing Approximate Stationarity Concepts for Piecewise Smooth Functions
(
Poster
)
>
link
|
Lai Tian 路 Anthony Man-Cho So
馃敆
|
-
|
Multi-head CLIP: Improving CLIP with Diverse Representations and Flat Minima
(
Poster
)
>
link
|
Mo Zhou 路 Xiong Zhou 路 Erran Li Li 路 Stefano Ermon 路 Rong Ge
馃敆
|
-
|
DynaLay: An Introspective Approach to Dynamic Layer Selection for Deep Networks
(
Poster
)
>
link
|
Mrinal Mathur 路 Sergey Plis
馃敆
|
-
|
Optimal Transport for Kernel Gaussian Mixture Models
(
Poster
)
>
link
|
Jung Hun Oh 路 Rena Elkin 路 Anish Simhal 路 Jiening Zhu 路 Joseph Deasy 路 Allen Tannenbaum
馃敆
|
-
|
Stochastic Optimization under Hidden Convexity
(
Poster
)
>
link
|
Ilyas Fatkhullin 路 Niao He 路 Yifan Hu
馃敆
|
-
|
On Optimization Formulations of Finite Horizon MDPs
(
Poster
)
>
link
|
Rajat Vadiraj Dwaraknath 路 Lexing Ying
馃敆
|
-
|
Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
(
Poster
)
>
link
|
Eric Zelikman 路 Eliana Lorch 路 Lester Mackey 路 Adam Tauman Kalai
馃敆
|
-
|
Learning Multi-Objective Optimization Problem Through Online Learning
(
Poster
)
>
link
|
Chaosheng Dong 路 Yijia Wang 路 Bo Zeng
馃敆
|