The Pareto frontier of resilient jet tagging
Rikab Gambhir · Matt LeBlanc · Yuanchen Zhou
Abstract
Classifying hadronic jets using their constituents' kinematic information is a critical task in modern high-energy collider physics. Often, classifiers are designed by targeting the best performance using metrics such as accuracy, AUC, or rejection rates. However, the use of a single metric can lead to the use of architectures that are more model-dependent than competitive alternatives, leading to potential uncertainty and bias in analysis. We explore such trade-offs and demonstrate the consequences of using networks with high performance metrics but low resilience.
Chat is not available.
Successful Page Load